Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 32

Answer

The eigenvalues of the given matrix A are $\lambda_1=1; \lambda_2=14$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} 2-\lambda & 4\\ 3 & 13-\lambda \end{bmatrix}$ $=(2- \lambda).(13- \lambda)-4.3$ $=26-2\lambda -13\lambda +\lambda^2 -12$ $=\lambda^2 -15\lambda +14$ $\rightarrow \lambda_1=1; \lambda_2=14$ The eigenvalues of the given matrix A are $\lambda_1=1; \lambda_2=14$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.