Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.3 Cofactor Expansions - Problems - Page 233: 35

Answer

$\rightarrow \lambda_1=2; \lambda_2=14, \lambda_3=0$

Work Step by Step

We are given: $\det (A- \lambda I)=0$ Using cofactor expansion along the first column of $A−\lambda I$, we obtain $\det(A−\lambda)=\det \begin{bmatrix} 2-\lambda & 0 & 0\\ 7& 7-\lambda & 7 \\ 7 & 7 & 7-\lambda \end{bmatrix}=0$ $(2- \lambda).[(7- \lambda)^2-49]=0$ $(2- \lambda).(14- \lambda)(-\lambda)=0$ $\rightarrow \lambda_1=2; \lambda_2=14, \lambda_3=0$ The eigenvalues of the given matrix A are $\rightarrow \lambda_1=2; \lambda_2=14, \lambda_3=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.