Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 24

Answer

$x=\begin{pmatrix} -\frac{1}{12}\\ \frac{1}{3}\\ \frac{1}{2} \end{pmatrix}, y=\begin{pmatrix} 1\\ -3\\ -2 \end{pmatrix}$

Work Step by Step

Given: $A=\begin{bmatrix} 2 & 2 & 1\\ 6&3&-1\\ -4 & 2 & 2 \end{bmatrix} $ $b=\begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix} $ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 2 & 2 & 1\\ 6&3&-1\\ -4 & 2 & 2 \end{bmatrix} \approx^1\begin{bmatrix} 2 & 2 & 1\\ 0&-3&-4\\ 0 & 6 &4 \end{bmatrix} \approx^2 \begin{bmatrix} 2 & 2 & 1\\ 0&-3&-4\\ 0 & 0 &-4 \end{bmatrix} =U$ $1.A_{12}(-3),A_{13}(2)$ $2.A_{23}(2)$ Corresponding multiplier: $m_{21}=3,m_{31}=-2,m_{32}=-2$ Consequently, we get $L=\begin{bmatrix} 1&0&0\\ 3& 1 &0\\ -2&-2 & 1 \end{bmatrix}$ We now solve the two triangular systems $Ly = b$ and $Ux = y$. Using forward substitution on the first of these systems, we have: $y_1=1$ $3y_1+y_2=0 \rightarrow 3.1+y_2=0 \rightarrow y_2=-3$ $-2y_1-2y_2+y_3=2 \rightarrow y_3=-2$ Solving $Ux = y$ via back substitution yields: $-4x_3=-2 \rightarrow x_3=\frac{1}{2}$ $-3x_2-4x_3=-3 \rightarrow x_2=\frac{1}{3}$ $2x_1+2x_2+x_3=1 \rightarrow x_1=-\frac{1}{12}$ The solution of the system are $x=\begin{pmatrix} -\frac{1}{12}\\ \frac{1}{3}\\ \frac{1}{2} \end{pmatrix}, y=\begin{pmatrix} 1\\ -3\\ -2 \end{pmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.