Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 23

Answer

$y=\begin{pmatrix} 1\\ 2\\ -5 \end{pmatrix}$ $x=\begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix}$

Work Step by Step

Given: $A=\begin{bmatrix} 1 & -3 & 5\\ 3&2&2\\ 2 & 5 & 2 \end{bmatrix} $ $b=\begin{bmatrix} 1\\ 5\\ -1 \end{bmatrix} $ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1 & -3 & 5\\ 3&2&2\\ 2 & 5 & 2 \end{bmatrix} \approx^1\begin{bmatrix} 1 & -3 & 5\\ 0&11&-13\\ 0 & 11 & -8 \end{bmatrix} \approx^2 \approx\begin{bmatrix} 1 & -3 & 5\\ 0&11&-13\\ 0 & 0 &5 \end{bmatrix}=U$ $1.A_{12}(-3),A_{13}(-2)$ $2.A_{23}(-1)$ Corresponding multiplier: $m_{21}=3,m_{31}=2,m_{32}=1$ Consequently, we get $L=\begin{bmatrix} 1&0&0\\ 3& 1 &0\\ 2 & 1 & 1 \end{bmatrix}$ We now solve the two triangular systems $Ly = b$ and $Ux = y$. Using forward substitution on the first of these systems, we have: $y_1=1$ $3y_1+y_2=5 \rightarrow 3.1+y_2=5 \rightarrow y_2=2$ $2y_1+y_2+y_3=-1 \rightarrow y_3=-5$ Solving $Ux = y$ via back substitution yields: $5x_3=-5 \rightarrow x_3=-1$ $11x_2-13x_3=2=-7 \rightarrow x_2=-1$ $x_2-3x_2+5x_3=1 \rightarrow x_1=3$ The solution of the system are $y=\begin{pmatrix} 1\\ 2\\ -5 \end{pmatrix}, x=\begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.