Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 10

Answer

$A=\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}\begin{bmatrix} 1&0\\ 4& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 0& -21 \end{bmatrix}\begin{bmatrix} 1&4\\ 0& 1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 4&-5\\ 1& 4 \end{bmatrix} \approx^1\begin{bmatrix} 1& 4\\ 4&-5 \end{bmatrix} \approx^2\begin{bmatrix} 1& 4\\ 0&-21 \end{bmatrix} \approx^3\begin{bmatrix} 1& 4\\ 0&1 \end{bmatrix} \approx^4\begin{bmatrix} 1& 0\\ 0&1 \end{bmatrix} $ $1.P_{12}$ $2.A_{12}(-4)$ $3.M_{2}(-\frac{1}{21})$ $4.A_{21}(-4)$ So, elementary matrices are $P_{12},A_{12}(-4),M_{2}(-\frac{1}{21}),A_{21}(-4)$ or $E_1=\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}, E_2=\begin{bmatrix} 1&0\\ -4& 1 \end{bmatrix}, E_3=\begin{bmatrix} 1&0\\ 0& -\frac{1}{21} \end{bmatrix}, E_4=\begin{bmatrix} 1&-4\\ 0&0 \end{bmatrix}$ $A=E_1E_2E_3E_4A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}=\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}\begin{bmatrix} 1&0\\ 4& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 0& -21 \end{bmatrix}\begin{bmatrix} 1&4\\ 0& 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.