Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 7

Answer

$A=\begin{bmatrix} 1&0\\ 1& 1 \end{bmatrix}.\begin{bmatrix} 1&2\\ 0& 1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1&2\\ 1& 3 \end{bmatrix} \approx^1\begin{bmatrix} 1&2\\ 0& 1 \end{bmatrix} \approx^2\begin{bmatrix} 1&0\\ 0& 1 \end{bmatrix}$ $1.A_{12}(-1)$ $2.A_{21}(-2)$ So, elementary matrices are $A_{21}(-2),A_{12}(-1)$ or $E_1=\begin{bmatrix} 1&-2\\ 0& 1 \end{bmatrix},E_2=\begin{bmatrix} 1&0\\ -1& 1 \end{bmatrix}$ $A=E_1E_2A=I_2$ $\rightarrow A=E_2^{-1}E_1^{-1}=\begin{bmatrix} 1&0\\ 1& 1 \end{bmatrix}.\begin{bmatrix} 1&2\\ 0& 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.