Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 2

Answer

$\begin{bmatrix} 1 &\frac{1}{4}\\ 0 & 1\\ 0 & 0 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} -4 & -1\\ 0& 3\\ -3 & 7 \end{bmatrix} \approx^1 \begin{bmatrix} 1 & \frac{1}{4}\\ 0& 3\\ -3 & 7 \end{bmatrix} \approx^2 \begin{bmatrix} 1 & \frac{1}{4}\\ 0& 3\\ 0 & \frac{31}{4} \end{bmatrix} \approx^3 \begin{bmatrix} 1 & \frac{1}{4}\\ 0& 1\\ 0 & \frac{31}{4} \end{bmatrix} \approx^4 \begin{bmatrix} 1 & \frac{1}{4}\\ 0& 1\\ 0 & 0 \end{bmatrix}$ $1. M_1(- \frac{1}{4})$ $2.A_{13}(3)$ $3.M_2( \frac{1}{3})$ $4. A_{23}(\frac{-31}{4})$ So, elementary matrices are $A_{13}(3),M_2( \frac{1}{3}),A_{13}(3),A_{23}(\frac{-31}{4})=\begin{bmatrix} 1 &\frac{1}{4}\\ 0 & 1\\ 0 & 0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.