Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 11

Answer

$A=\begin{bmatrix} 1 & 0&0\\ 2 &1& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 1&0\\ 0 &1& 0\\ 3 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 &0&0\\ 0 &1& 0\\ 0 & 1 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &4& 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&0\\ 0 &1& \frac{1}{2}\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & -1&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1&-1 & 0\\ 2& 2 &2\\ 3 &1 &3 \end{bmatrix} \approx^1\begin{bmatrix} 1&-1 & 0\\ 0& 4&2\\ 0 &4 &3 \end{bmatrix} \approx^2\begin{bmatrix} 1&-1 & 0\\ 0& 4&2\\ 0 &0 &1 \end{bmatrix} \approx^3\begin{bmatrix} 1&-1 & 0\\ 0& 1&\frac{1}{2}\\ 0 &0 &1 \end{bmatrix} \approx^4\begin{bmatrix} 1&-1 & 0\\ 0& 1&0\\ 0 &0 &1 \end{bmatrix} \approx^5 \begin{bmatrix} 1&0 & 0\\ 0& 1&0\\ 0 &0 &1 \end{bmatrix}$ $1.A_{12}(-2),A_{13}(-3)$ $2.A_{23}(-1)$ $3.M_2(\frac{1}{4})$ $4.A_{32}(-\frac{1}{2})$ $5.A_{21}(1)$ So, elementary matrices are $A_{12}(-2),A_{13}(-3),A_{23}(-1),M_2(\frac{1}{4}),A_{32}(-\frac{1}{2}),A_{21}(1)$ or $E_1=\begin{bmatrix} 1 & 0&0\\ -2 &1& 0\\ 0 & 0 &1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ -3 & 0 &1 \end{bmatrix}, E_3=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 & -1 &1 \end{bmatrix}, E_4=\begin{bmatrix} 1 & 0&0\\ 0 &\frac{1}{4}& 0\\ 0 & 0 &1 \end{bmatrix},E_5=\begin{bmatrix} 1 & 0&0\\ 0 &1& -\frac{1}{2}\\ 0 & 0 &1 \end{bmatrix},E_6=\begin{bmatrix} 1 & 1&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$ $A=E_1E_2E_3E_4E_5E_6A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}E_6^{-1}=\begin{bmatrix} 1 & 0&0\\ 2 &1& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 1&0\\ 0 &1& 0\\ 3 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 &0&0\\ 0 &1& 0\\ 0 & 1 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &4& 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&0\\ 0 &1& \frac{1}{2}\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & -1&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.