Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 3

Answer

$\begin{bmatrix} 1 &-2\\ 0 & 1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 3 & 5\\ 1& -2 \end{bmatrix} \approx^1 \begin{bmatrix} 1& -2\\ 3 & 5 \end{bmatrix}\approx^2 \begin{bmatrix} 1& -2\\ 0&11 \end{bmatrix}\approx^3 \begin{bmatrix} 1 & -2\\ 0& 1 \end{bmatrix}$ $1. P_{12}$ $2.A_{12}(-3)$ $3.M_2( \frac{1}{11})$ So, elementary matrices are $M_2( \frac{1}{11}),A_{12}(-3),P_{12}=\begin{bmatrix} 1 &-2\\ 0 & 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.