Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 8

Answer

$A=\begin{bmatrix} 1&0\\ -2& 1 \end{bmatrix}\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}\begin{bmatrix} 1&0\\ -2& 1 \end{bmatrix}\begin{bmatrix} 1&-1\\ 0& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 0& -1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} -2&-3\\ 5& 7 \end{bmatrix} \approx^1\begin{bmatrix} -2&-3\\ 1& 1 \end{bmatrix} \approx^2\begin{bmatrix} 1& 1\\ -2&-3 \end{bmatrix} \approx^3 \begin{bmatrix} 1& 1\\ 0&-1 \end{bmatrix} \approx^4 \begin{bmatrix} 1& 0\\ 0&-1 \end{bmatrix} \approx^5 \begin{bmatrix} 1& 0\\ 0&1 \end{bmatrix}$ $1.A_{12}(2)$ $2.P_{12}(-2)$ $3.A_{12}(2)$ $4.A_{21}(1)$ $5.M_{2}(-1)$ So, elementary matrices are $A_{12}(2),P_{12}(-2),A_{12}(2),A_{21}(1),M_{2}(-1)$ or $E_1=\begin{bmatrix} 1&0\\ 2& 1 \end{bmatrix},E_2=\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}, E_3=\begin{bmatrix} 1&0\\ 2& 1 \end{bmatrix}, E_4=\begin{bmatrix} 1&1\\ 0& 1 \end{bmatrix}, E_5=\begin{bmatrix} 1&0\\ 0& -1 \end{bmatrix}$ $A=E_1E_2E_3E_4E_5A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}=\begin{bmatrix} 1&0\\ -2& 1 \end{bmatrix}\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}\begin{bmatrix} 1&0\\ -2& 1 \end{bmatrix}\begin{bmatrix} 1&-1\\ 0& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 0& -1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.