Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 6

Answer

The elementary matrices are $A_{23}(2),M_2( -1),A_{13}(-3),A_{12}(-2)$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1&2 & 3 & 4\\ 2& 3 & 4 & 5\\ 3 & 4 &5& 6 \end{bmatrix} \approx^1\begin{bmatrix} 1&2 & 3 & 4\\ 0& -1 & -2 & -3\\ 0 & -2 &-4& -6 \end{bmatrix} \approx^2\begin{bmatrix} 1&2 & 3 & 4\\ 0& 1 & 2 & 3\\ 0 & -2 &-4& -6 \end{bmatrix} \approx^3 \begin{bmatrix} 1&2 & 3 & 4\\ 0& 1 & 2 & 3\\ 0 & 0 &0&0 \end{bmatrix}$ $1.A_{12}(-2)$ $3.A_{13}(-3)$ $4.M_2(-1)$ $5.A_{23}(2)$ So, elementary matrices are $A_{23}(2),M_2( -1),A_{13}(-3),A_{12}(-2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.