Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 9

Answer

$A=\begin{bmatrix} 1&1\\ 0& 1 \end{bmatrix}\begin{bmatrix} -1&0\\ 0& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 3& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 0& 0 \end{bmatrix}\begin{bmatrix} 1&-2\\ 0& 1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 3&-4\\ -1& 2 \end{bmatrix} \approx^1\begin{bmatrix} -1& 2\\ 3&-4 \end{bmatrix} \approx^2\begin{bmatrix} 1& -2\\ 3&-4 \end{bmatrix} \approx^3 \begin{bmatrix} 1& -2\\ 0&2 \end{bmatrix} \approx^4 \begin{bmatrix} 1& -2\\ 0&1 \end{bmatrix} \approx^5 \begin{bmatrix} 1& 0\\ 0&1 \end{bmatrix}$ $1.P_{12}$ $2.M_1(-1)$ $3.A_{12}(-3)$ $4.M_{2}(\frac{1}{2})$ $5.A_{21}(2)$ So, elementary matrices are $P_{12},M_1(-1),A_{12}(-3),M_{2}(\frac{1}{2}),A_{21}(2)$ or $E_1=\begin{bmatrix} 0&1\\ 1& 0 \end{bmatrix}, E_2=\begin{bmatrix} -1&0\\ 0& 1 \end{bmatrix}, E_3=\begin{bmatrix} 1&0\\ -3& 1 \end{bmatrix}, E_4=\begin{bmatrix} 1&0\\ 0& \frac{1}{2} \end{bmatrix},E_5=\begin{bmatrix} 1&2\\ 0& 1 \end{bmatrix}$ $A=E_1E_2E_3E_4E_5A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}=\begin{bmatrix} 1&1\\ 0& 1 \end{bmatrix}\begin{bmatrix} -1&0\\ 0& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 3& 1 \end{bmatrix}\begin{bmatrix} 1&0\\ 0& 0 \end{bmatrix}\begin{bmatrix} 1&-2\\ 0& 1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.