Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 22

Answer

$x=\begin{pmatrix} -11\\ 7 \end{pmatrix}$

Work Step by Step

Given: $A=\begin{bmatrix} 1 & 2\\ 2&3 \end{bmatrix} $ $b=\begin{bmatrix} 3\\ -1 \end{bmatrix} $ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1 & 2\\ 2&3 \end{bmatrix} \approx^1\begin{bmatrix} 1 & 2\\ 0&-1 \end{bmatrix}=U$ $1.A_{12}(-2)$ Corresponding multiplier: $m_{21}=2$ Consequently, we get $L=\begin{bmatrix} 1&0\\ 2& 1 \end{bmatrix}$ We now solve the two triangular systems $Ly = b$ and $Ux = y$. Using forward substitution on the first of these systems, we have: $y_1=3$ $2y_1+y_2=-1 \rightarrow 2.3+y_2=-1 \rightarrow y_2=-7$ Solving $Ux = y$ via back substitution yields: $x_1+2x_2=3$ $-x_2=-7$ then $x_2=7$ $x_1+2.7=3 \rightarrow x_1=-11$ The solution of the system is $x=\begin{pmatrix} -11\\ 7 \end{pmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.