Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 12

Answer

$A=\begin{bmatrix} 0 & 1&0\\ 1 &0& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ -2 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 &0&0\\ 0 &1& 0\\ 0 & 1 &8 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& -2\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&3\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&0\\ 0 &-4& 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & -1&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 0&-4 & -2\\ 1& -1 &3\\ -2 &2 &2 \end{bmatrix} \approx^1\begin{bmatrix} 1& -1 &3 \\ 0&-4 & -2\\ -2 &2 &2 \end{bmatrix} \approx^2\begin{bmatrix} 1& -1 &3 \\ 0&-4 & -2\\ 0 &0 &8 \end{bmatrix} \approx^3\begin{bmatrix} 1& -1 &3 \\ 0&-4 & -2\\ 0 &0 &1 \end{bmatrix} \approx^4\begin{bmatrix} 1& -1 &3 \\ 0&-4 & 0\\ 0 &0 &1 \end{bmatrix} \approx^5 \begin{bmatrix} 1& -1 &0 \\ 0&-4 & 0\\ 0 &0 &1 \end{bmatrix} \approx^6 \begin{bmatrix} 1& -1 &0 \\ 0&1& 0\\ 0 &0 &1 \end{bmatrix} \approx^7 \begin{bmatrix} 1&0 &0 \\ 0&1 & 0\\ 0 &0 &1 \end{bmatrix} $ $1.P_{12}(-2)$ $2.A_{13}(2)$ $3.M_3(\frac{1}{8})$ $4.A_{32}(2)$ $5.A_{31}(-3)$ $6.M_{2}(-\frac{1}{4})$ $7.A_{21}(1)$ So, elementary matrices are $P_{12}(-2),A_{13}(2),M_3(\frac{1}{8}),A_{32}(2),A_{31}(-3),M_{2}(-\frac{1}{4}),A_{21}(1)$ or $E_1=\begin{bmatrix} 0 & 1&0\\ 1 &0& 0\\ 0 & 0 &1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 2 & 0 &1 \end{bmatrix}, E_3=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 &0 &\frac{1}{8} \end{bmatrix}, E_4=\begin{bmatrix} 1 & 0&0\\ 0 &1& 2\\ 0 & 0 &1 \end{bmatrix},E_5=\begin{bmatrix} 1 & 0&-3\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix},E_6=\begin{bmatrix} 1 & 1&0\\ 0 &-\frac{1}{4}& 0\\ 0 & 0 &1 \end{bmatrix},E_7=\begin{bmatrix} 1 & 1&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$ $A=E_1E_2E_3E_4E_5E_6E_7A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}E_6^{-1}E_7^{-1}=\begin{bmatrix} 0 & 1&0\\ 1 &0& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ -2 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 &0&0\\ 0 &1& 0\\ 0 & 1 &8 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& -2\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&3\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&0\\ 0 &-4& 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 & -1&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.