Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 13

Answer

$A=\begin{bmatrix} 1 & 0&0\\ 0 &8& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 3 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 &2&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 & -2 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 & 0 &-4 \end{bmatrix}\begin{bmatrix} 1 & 0&3\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 1&2 & 3\\ 0& 8 &0\\ 3 &4&5 \end{bmatrix} \approx^1\begin{bmatrix} 1&2 & 3\\ 0& 1 &0\\ 3 &4&5 \end{bmatrix} \approx^2\begin{bmatrix} 1&2 & 3\\ 0& 1 &0\\ 0 &-2&-4 \end{bmatrix} \approx^3\begin{bmatrix} 1&2 & 3\\ 0& 1 &0\\ 0 &0&-4 \end{bmatrix} \approx^4\begin{bmatrix} 1&0 & 3\\ 0& 1 &0\\ 0 &0&1 \end{bmatrix} \approx^5 \begin{bmatrix} 1&0 &0 \\ 0&1 & 0\\ 0 &0 &1 \end{bmatrix} $ $1.M_2(\frac{1}{8})$ $2.A_{13}(-3)$ $3.A_{21}(-2),A_{23}(2)$ $4.M_{3}(-\frac{1}{4})$ $5.A_{31}(-3)$ So, elementary matrices are $M_2(\frac{1}{8}),A_{13}(-3),A_{21}(-2),A_{23}(2),M_{3}(-\frac{1}{4}),A_{31}(-3)$ or $E_1=\begin{bmatrix} 1 & 0&0\\ 0 &\frac{1}{8}& 0\\ 0 & 0 &1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ -3 & 0 &1 \end{bmatrix}, E_3=\begin{bmatrix} 1 & -2&0\\ 0 &1& 0\\ 0 &0 &1 \end{bmatrix}, E_4=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 &2 &1 \end{bmatrix},E_5=\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 & 0 &-\frac{1}{4} \end{bmatrix},E_6=\begin{bmatrix} 1 & 0&-3\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$ $A=E_1E_2E_3E_4E_5E_6A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}E_5^{-1}E_6^{-1}=\begin{bmatrix} 1 & 0&0\\ 0 &8& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 3 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 &2&0\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix} \begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 & -2 &1 \end{bmatrix}\begin{bmatrix} 1 & 0&0\\ 0 &1& 0\\ 0 & 0 &-4 \end{bmatrix}\begin{bmatrix} 1 & 0&3\\ 0 &1& 0\\ 0 & 0 &1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.