Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 4

Answer

$\begin{bmatrix} 1 & 3 &-1\\ 0 & 1 & -1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 5& 8 & 2\\ 1& 3 & -1 \end{bmatrix} \approx^1\begin{bmatrix} 1& 3 & -1\\ 5& 8 & 2 \end{bmatrix}\approx^2 \begin{bmatrix} 1& 3 & -1\\ 0& -7 & 7 \end{bmatrix} \approx^3 \begin{bmatrix} 1& 3 & -1\\ 0& 1& -1 \end{bmatrix}$ $1. P_{12}$ $2.A_{12}(-5)$ $3.M_2( \frac{-1}{7})$ So, elementary matrices are $M_2( \frac{-1}{7}),A_{12}(-5),P_{12}=\begin{bmatrix} 1 & 3 &-1\\ 0 & 1 & -1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.