Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 5

Answer

See answer below

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 3& -1 & 4\\ 2& 1 & 3\\ 1 & 3 & 2 \end{bmatrix} \approx^1\begin{bmatrix} 1 & 3 & 2\\ 2& 1 & 3\\ 3& -1 & 4 \end{bmatrix} \approx^2\begin{bmatrix} 1 & 3 & 2\\ 0& -5 & -1\\ 3& -1 & 4 \end{bmatrix} \approx^3 \begin{bmatrix} 1 & 3 & 2\\ 0& -5 & -1\\ 0& -10 & -2 \end{bmatrix} \approx^4 \begin{bmatrix} 1 & 3 & 2\\ 0& 1 & \frac{1}{5}\\ 0& -10 & -2 \end{bmatrix} \approx^5 \begin{bmatrix} 1 & 3 & 2\\ 0& 1 & \frac{1}{5}\\ 0& 0 & 0 \end{bmatrix}$ $1. P_{13}$ $2.A_{12}(-2)$ $3.A_{13}(-3)$ $4.M_2( \frac{-1}{5})$ $5.A_{23}(10)$ So, elementary matrices are $A_{23}(10),M_2( \frac{-1}{5}),A_{13}(-3),A_{12}(-2),P_{13}=$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.