Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 21

Answer

See answer below

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 2& -3 & 1 & 2\\ 4& -1 &1& 1\\ -8& 2& 2 & -5\\ 6&1&5&2 \end{bmatrix} \approx^1\begin{bmatrix} 2& -3 & 1 & 2\\ 0& 5 &-1& 3\\ 0& -10&6 & 3\\ 0&10&2&4 \end{bmatrix} \approx^2\begin{bmatrix} 2& -3 & 1 & 2\\ 0& 5 &-1& 3\\ 0& 0&4 & -3\\ 0&0&4&2 \end{bmatrix} \approx^3\begin{bmatrix} 2& -3 & 1 & 2\\ 0& 5 &-1& 3\\ 0& 0&4 & -3\\ 0&0&0&5 \end{bmatrix} $ $1.A_{12}(-2),A_{13}(4),A_{14}(-3)$ $2.A_{23}(2),A_{24}(-2)$ $3.A_{34}(-1)$ Corresponding multiplier: $m_{21}=2,m_{31}=-4,m_{41}(3),m_{32}=1,m_{42}(2),m_{43}(1)$ Consequently, we get $L=\begin{bmatrix} 1&0&0&0\\ 2& 1&0 & 0\\ -4 & -2 & 1 & 0\\ 3 &2 &1 &1 \end{bmatrix}$ We leave it as an exercise to verify that $LU = A$ $\begin{bmatrix} 1&0&0&0\\ 2& 1&0 & 0\\ -4 & -2 & 1 & 0\\ 3 &2 &1 &1 \end{bmatrix} \begin{bmatrix} 2& -3 & 1 & 2\\ 0& 5 &-1& 3\\ 0& 0&4 & -3\\ 0&0&0&5 \end{bmatrix} =\begin{bmatrix} 2& -3 & 1 & 2\\ 4& -1 &1& 1\\ -8& 2& 2 & -5\\ 6&1&5&2 \end{bmatrix} =A$ Hence, the resulted matrices are correct
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.