Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 187: 14

Answer

$E_1=\begin{bmatrix} 0&1\\ 1 &0 \end{bmatrix}, E_2=\begin{bmatrix} 1&0\\ -2 &1 \end{bmatrix}, E_3=\begin{bmatrix} 1&0\\ 0 &-\frac{1}{7} \end{bmatrix}, E_4=\begin{bmatrix} 1&-3\\ 0 &1 \end{bmatrix}$

Work Step by Step

We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 2 & -1\\ 1&3 \end{bmatrix} \approx^1\begin{bmatrix} 1&3\\ 2 & -1 \end{bmatrix} \approx^2\begin{bmatrix} 1&3\\ 0 & 7 \end{bmatrix} \approx^3\begin{bmatrix} 1&3\\ 0& 1 \end{bmatrix} \approx^4\begin{bmatrix} 1&0\\ 0& 1 \end{bmatrix}$ $1.P_{12}(-3)$ $3.A_{12}(-2)$ $4.M_{2}(-\frac{1}{7})$ $5.A_{21}(-3)$ So, elementary matrices are $P_{12}(-3),A_{12}(-2),M_{2}(-\frac{1}{7}),A_{21}(-3)$ or $E_1=\begin{bmatrix} 0&1\\ 1 &0 \end{bmatrix}, E_2=\begin{bmatrix} 1&0\\ -2 &1 \end{bmatrix}, E_3=\begin{bmatrix} 1&0\\ 0 &-\frac{1}{7} \end{bmatrix}, E_4=\begin{bmatrix} 1&-3\\ 0 &1 \end{bmatrix}$ To verify that $E_1E_2E_3E_4A=I_2$ $\rightarrow A=E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1}=\begin{bmatrix} 1 & -3\\ 0 &1 \end{bmatrix}\begin{bmatrix} 1 & 0\\ 0 &-\frac{1}{7} \end{bmatrix} \begin{bmatrix} 1 &0\\ -2 &1 \end{bmatrix} \begin{bmatrix} 0& 1\\ 1 &0 \end{bmatrix}\begin{bmatrix} 2 & -1\\ 1 &3 \end{bmatrix} $ $=\begin{bmatrix} 1 & 0\\ 0 &1 \end{bmatrix} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.