Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.7 Elementary Matrices and the LU Factorization - Problems - Page 188: 25

Answer

$x=\begin{pmatrix} -\frac{677}{1300}\\ \frac{-9}{325}\\ \frac{-37}{65}\\ \frac{4}{13} \end{pmatrix}, y=\begin{pmatrix} 2\\ -1\\ -1\\ 4 \end{pmatrix}$

Work Step by Step

Given: $A=\begin{bmatrix} 4 & 3 & 0 & 0\\ 8&1&2&0\\ 0 & 5& 3 &6\\ 0 & 0 & -5 & 7 \end{bmatrix} $ $b=\begin{bmatrix} 2\\ 3\\ 0\\ 5 \end{bmatrix} $ We can reduce A to row-echelon form using the following sequence of elementary row operations: $\begin{bmatrix} 4 & 3 & 0 & 0\\ 8&1&2&0\\ 0 & 5& 3 &6\\ 0 & 0 & -5 & 7 \end{bmatrix} \approx^1\begin{bmatrix} 4 & 3 & 0 & 0\\ 0&-5&2&0\\ 0 & 5& 3 &6\\ 0 & 0 & -5 & 7 \end{bmatrix} \approx^2\begin{bmatrix} 4 & 3 & 0 & 0\\ 0&-5&2&0\\ 0 &0& 5 &6\\ 0 & 0 & -5 & 7 \end{bmatrix} \approx^3 \begin{bmatrix} 4 & 3 & 0 & 0\\ 0&-5&2&0\\ 0 & 5& 3 &6\\ 0 & 0 & 0 & 13 \end{bmatrix} =U$ $1.A_{12}(-2)$ $2.A_{23}(1)$ $3. A_{34}(1)$ Corresponding multiplier: $m_{21}=2,m_{32}=-1,m_{43}=-1$ Consequently, we get $L=\begin{bmatrix} 1&0&0&0\\ 2& 1 &0&0\\ 0&-1 & 1 & 0\\ 0 & 0 & -1 & 1 \end{bmatrix}$ We now solve the two triangular systems $Ly = b$ and $Ux = y$. Using forward substitution on the first of these systems, we have: $y_1=2$ $2y_1+y_2=3 \rightarrow y_2=-1$ $-y_2+y_3=0\rightarrow y_3=-1 $ $-y_3+y_4=5\rightarrow y_4=4$ Solving $Ux = y$ via back substitution yields: $13x_4=4 \rightarrow x_4=\frac{4}{13}$ $5x_3+6x_4=-1 \rightarrow x_3=\frac{-37}{65}$ $-5x_2+2x_3=-1 \rightarrow x_2=\frac{-9}{325}$ $4x_1+3x_2=2 \rightarrow x_1=-\frac{677}{1300}$ The solution of the system are $x=\begin{pmatrix} -\frac{677}{1300}\\ \frac{-9}{325}\\ \frac{-37}{65}\\ \frac{4}{13} \end{pmatrix}, y=\begin{pmatrix} 2\\ -1\\ -1\\ 4 \end{pmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.