Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Review - Exercises - Page 890: 52

Answer

arithmetic, $1650$

Work Step by Step

An arithmetic sequence has a common difference $a_{n}=a+(n-1)d, $with nth partial sum: 1. $ S_{n}=\displaystyle \frac{n}{2}[2a+(n-1)d]\qquad$ or 2. $S_{n}=n(\displaystyle \frac{a+a_{n}}{2})$ A geometric sequence has a common ratio $a_{n}=ar^{n-1}$, with nth partial sum: $S_{n}=a\displaystyle \cdot\frac{1-r^{n}}{1-r}$ ------------------ Testing for common difference: $\displaystyle \frac{2}{3}-\frac{1}{3}=\frac{1}{3},\displaystyle \qquad 1-\frac{2}{3}=\frac{1}{3},\quad\frac{4}{3}-1=\frac{1}{3}$ There is a common difference, the sequence is arithmetic, $a=\displaystyle \frac{1}{3}$ and $d=\displaystyle \frac{1}{3}$ $a_{n}=\displaystyle \frac{1}{3}+\frac{1}{3}(n-1)$ The last term is $33$, from which we find n (the number of terms in the sum) $\displaystyle \frac{1}{3}+\frac{1}{3}(n-1)=33\qquad/\times 3$ $1+n-1=99$ $n=99$ So, $S_{99}=n(\displaystyle \frac{a+a_{n}}{2})=\frac{99}{2}(\frac{1}{3}+\frac{99}{3})$ $=\displaystyle \frac{99}{2}\cdot\frac{100}{3}=1650$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.