Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.3 Geometric Sequences; Geometric Series - 12.3 Assess Your Understanding - Page 824: 18

Answer

In order for a sequence to be geometric, the quotient of all consecutive terms must be constant. Hence here: $\frac{a_{n+1}}{a_n}=\dfrac{(\frac{2^{(n+1)}}{3^{(n-1)+1}})}{(\frac{2^{n}}{3^{n-1}})}=\frac{2}{3}$, thus it is a geometric sequence. $a_1=2$ $a_2=\frac{4}{3}$ $a_3=\frac{8}{9}$ $a_4=\frac{16}{27}$

Work Step by Step

In order for a sequence to be geometric, the quotient of all consecutive terms must be constant. Hence here: $\frac{a_{n+1}}{a_n}=\dfrac{(\frac{2^{(n+1)}}{3^{(n-1)+1}})}{(\frac{2^{n}}{3^{n-1}})}=\frac{2}{3}$, thus it is a geometric sequence. $a_1=\frac{2^{1}}{3^{1-1}}=\frac{2}{1}=2$ $a_2=\frac{2^{2}}{3^{2-1}}=\frac{4}{3}$ $a_3=\frac{2^{3}}{3^{3-1}}=\frac{8}{9}$ $a_4=\frac{2^{4}}{3^{4-1}}=\frac{16}{27}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.