Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.3 Geometric Sequences; Geometric Series - 12.3 Assess Your Understanding - Page 824: 13

Answer

In order for a sequence to be geometric, the quotient of all consecutive terms must be constant. Hence here: $\frac{a_{n+1}}{a_n}=\dfrac{(\frac{2^{(n+1)-1}}{4})}{(\frac{2^{n-1}}{4})}=2$, thus it is a geometric sequence. $a_1=\frac{1}{4}$ $a_2=\frac{1}{2}$ $a_3=1$ $a_4=2$

Work Step by Step

In order for a sequence to be geometric, the quotient of all consecutive terms must be constant. Hence here: $\frac{a_{n+1}}{a_n}=\dfrac{(\frac{2^{(n+1)-1}}{4})}{(\frac{2^{n-1}}{4})}=2$, thus it is a geometric sequence. $a_1=\frac{2^{1-1}}{4}=\frac{1}{4}$ $a_2=\frac{2^{2-1}}{4}=\frac{2}{4}=\frac{1}{2}$ $a_3=\frac{2^{3-1}}{4}=\frac{4}{4}=1$ $a_4=\frac{2^{4-1}}{4}=\frac{8}{4}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.