Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.3 Geometric Sequences; Geometric Series - 12.3 Assess Your Understanding - Page 824: 17

Answer

In order for a sequence to be geometric, the quotient of all consecutive terms must be constant. Hence here: $\frac{a_{n+1}}{a_n}=\dfrac{(\frac{3^{((n-1)+1)}}{2^{n+1}})}{(\frac{3^{(n-1)}}{2^n})}=\frac{3}{2}$, thus it is a geometric sequence. $a_1=\frac{1}{2}$ $a_2=\frac{3}{4}$ $a_3=\frac{9}{8}$ $a_4=\frac{27}{16}$

Work Step by Step

In order for a sequence to be geometric, the quotient of all consecutive terms must be constant. Hence here: $\frac{a_{n+1}}{a_n}=\dfrac{(\frac{3^{((n-1)+1)}}{2^{n+1}})}{(\frac{3^{(n-1)}}{2^n})}=\frac{3}{2}$, thus it is a geometric sequence. $a_1=\frac{3^{(1-1)}}{2^1}=\frac{1}{2}$ $a_2=\frac{3^{(2-1)}}{2^2}=\frac{3}{4}$ $a_3=\frac{3^{(3-1)}}{2^3}=\frac{9}{8}$ $a_4=\frac{3^{(4-1)}}{2^4}=\frac{27}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.