Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 9

Answer

$y^{\prime}=-\displaystyle \frac{y}{x(\ln x+1)}$

Work Step by Step

Differentiating an equation containing terms of form $f(x)$ and $g(y)$, terms $f(x)$ are differentiated directly, $\displaystyle \frac{d}{dx}[f(x)],$ and terms $g(y)$ are differentiated using the chain rule, $\displaystyle \frac{d}{dx}[g(y)]=\frac{d}{dy}[g(y)]\cdot\frac{dy}{dx}$ ------------------ LHS: first term is a product, $(uv)^{\prime}=u^{\prime}v+uv^{\prime}$ RHS: constant $y\cdot\ln x+y=2$ Differentiate both sides, $(y^{\prime})\displaystyle \cdot\ln x+y\cdot(\frac{1}{x})+y^{\prime}=0\qquad/-\frac{y}{x}$ ... isolating $y^{\prime}$ on one side... $y^{\prime}\displaystyle \cdot\ln x+y^{\prime}=-\frac{y}{x}$ ... on the LHS, factor out $y^{\prime}$ $y^{\prime}(\displaystyle \ln x+1)=-\frac{y}{x}\qquad/\div(\ln x+1)$ $y^{\prime}=-\displaystyle \frac{y}{x(\ln x+1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.