Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 16

Answer

$$\frac{{dy}}{{dx}} = \frac{y}{{4y - x}}$$

Work Step by Step

$$\eqalign{ & \frac{{xy}}{2} - {y^2} = 3;{\text{ }}\frac{{dy}}{{dx}} \cr & {\text{Differentiate both sides with respect to }}x \cr & \underbrace {\frac{d}{{dx}}\left[ {\frac{{xy}}{2}} \right]}_{{\text{Use product rule}}} - \underbrace {\frac{d}{{dx}}\left[ {{y^2}} \right]}_{{\text{Use chain rule}}} = \frac{d}{{dx}}\left[ 3 \right] \cr & \frac{x}{2}\frac{d}{{dx}}\left[ y \right] + \frac{y}{2}\frac{d}{{dx}}\left[ x \right] - {y^{2 - 1}}\frac{{dy}}{{dx}} = 0 \cr & \frac{1}{2}x\frac{{dy}}{{dx}} + \frac{1}{2}y - 2y\frac{{dy}}{{dx}} = 0 \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & \frac{1}{2}x\frac{{dy}}{{dx}} - 2y\frac{{dy}}{{dx}} = - \frac{1}{2}y \cr & \left( {\frac{1}{2}x - 2y} \right)\frac{{dy}}{{dx}} = - \frac{1}{2}y \cr & \left( {x - 4y} \right)\frac{{dy}}{{dx}} = - y \cr & \frac{{dy}}{{dx}} = - \frac{y}{{x - 4y}} \cr & \frac{{dy}}{{dx}} = \frac{y}{{4y - x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.