Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 15

Answer

$\displaystyle \frac{dy}{dx}=-\frac{6+9x^{2}y}{9x^{3}-x^{2}}$

Work Step by Step

$\displaystyle \frac{d}{dx}[3xy]=$..product...$= 3\displaystyle \cdot[1\cdot y+x\cdot\frac{dy}{dx}]$ $=3y+3x\displaystyle \cdot\frac{dy}{dx}$ $\displaystyle \frac{d}{dx}[\frac{y}{3}]=\frac{1}{3}\cdot\frac{dy}{dx}$ $\displaystyle \frac{d}{dx}[\frac{2}{x}]=\frac{d}{dx}[2x^{-1}]=2(-x^{-2})=-\frac{2}{x^{2}}$ so, after differentiating both sides, $3y+3x\displaystyle \cdot\frac{dy}{dx}-\frac{1}{3}\cdot\frac{dy}{dx}=-\frac{2}{x^{2}}$ which we solve for $\displaystyle \frac{dy}{dx}$ $\displaystyle \frac{dy}{dx}(3x-\frac{1}{3})=-\frac{2}{x^{2}}-3y$ $\displaystyle \frac{dy}{dx}=\frac{-\frac{2}{x^{2}}-3y}{(3x-\frac{1}{3})}=\frac{-2-3x^{2}y}{x^{2}(3x-\frac{1}{3})}$ $=\displaystyle \frac{-(2+3x^{2}y)}{x^{2}(\frac{9x-1}{3})}$ $=-\displaystyle \frac{3(2+3x^{2}y)}{x^{2}(9x-1)}$ $\displaystyle \frac{dy}{dx}=-\frac{6+9x^{2}y}{9x^{3}-x^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.