Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 24

Answer

$ \dfrac{ds}{dt}=\dfrac{s-s^2e^{s^2t}}{2ste^{s^2t} -t}$

Work Step by Step

We have: $e^{s^2t}-st=1$ We differentiate both sides with respect to $t$. $e^{s^2t} (s^2+2st \dfrac{ds}{dt})-s-t \dfrac{ds}{dt} =0 \\ s^2 e^{s^2t}+2st e^{s^2t} \dfrac{ds}{dt}-s-t \dfrac{ds}{dt}=0\\ (2ste^{s^2t} -t) \dfrac{ds}{dt}=s-s^2e^{s^2t}$ Therefore, $ \dfrac{ds}{dt}=\dfrac{s-s^2e^{s^2t}}{2ste^{s^2t} -t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.