Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 18

Answer

$\displaystyle \frac{dx}{dy}=-\frac{x+1}{xy}$

Work Step by Step

LHS, first term: chain rule, $\displaystyle \frac{d}{dy}[(xy)^{2}]=2(xy)\cdot\frac{d}{dy}[xy]$ $\displaystyle \frac{d}{dy}[xy]$=...product...$=\displaystyle \frac{dx}{dy}\cdot y+1$ $\displaystyle \frac{d}{dy}[(xy)^{2}]=2(xy)\cdot(\frac{dx}{dy}\cdot y+1)$ $LHS$, second term, $\displaystyle \frac{d}{dy}[y^{2}]=2y$ RHS, $\displaystyle \frac{d}{dy}[8]=0$ So, after differentiating both sides, we solve for $\displaystyle \frac{dx}{dy}$: $2(xy)\displaystyle \cdot(\frac{dx}{dy}\cdot y+1)+2y=0$ $\displaystyle \frac{dx}{dy}\cdot 2xy^{2}+2xy+2y=0\qquad/-2xy-2y$ $\displaystyle \frac{dx}{dy}\cdot 2xy^{2}=-2xy-2y\qquad/\div 2xy^{2}$ $\displaystyle \frac{dx}{dy}=\frac{-2y(x+1)}{2xy^{2}}=-\frac{x+1}{xy}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.