Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 26

Answer

$ \dfrac{dy}{dx}=-\dfrac{e^{-y}+y}{x-x e^{-y}-9}$

Work Step by Step

We have: $\dfrac{x}{e^y}+xy=9y$ We differentiate both sides with respect to $t$. $-xe^{-y} \dfrac{dy}{dx}+e^{-y}+x \dfrac{dy}{dx} +y=9 \dfrac{dy}{dx}\\-xe^{-y} \dfrac{dy}{dx}+x \dfrac{dy}{dx} -9 \dfrac{dy}{dx}=-e^{-y}-y\\ (-x e^{-y} +x-9) \dfrac{dy}{dx} =-e^{-y}-y$ Therefore, $ \dfrac{dy}{dx}=-\dfrac{e^{-y}+y}{x-x e^{-y}-9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.