Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 28

Answer

$-\dfrac{xy \ln y+x}{1+x^2 -xy}$

Work Step by Step

We have: $\ln (xy) -x \ln y=y$ We differentiate both sides with respect to $t$. $\dfrac{1}{y}+\dfrac{1}{xy} \dfrac{dy}{dx}+\dfrac{x}{y} \dfrac{dy}{dx}) +\ln y= \dfrac{dy}{dx}\\ \dfrac{1}{xy} \dfrac{dy}{dx}+\dfrac{x}{y} \dfrac{dy}{dx} - \dfrac{dy}{dx}=-\ln y -\dfrac{1}{y} \\ (\dfrac{1+x^2-xy}{xy}) \dfrac{dy}{dx} =-\ln y -\dfrac{1}{y} \\ (\dfrac{1+x^2-xy}{x}) \dfrac{dy}{dx} =-y\ln y -1$ Therefore, $ \dfrac{dy}{dx}=-\dfrac{xy \ln y+x}{1+x^2 -xy}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.