Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 3

Answer

$\displaystyle \frac{dy}{dx}=x$

Work Step by Step

Differentiating an equation containing terms of form $f(x)$ and $g(y)$, terms $f(x)$ are differentiated directly, $\displaystyle \frac{d}{dx}[f(x)],$ and terms $g(y)$ are differentiated using the chain rule, $\displaystyle \frac{d}{dx}[g(y)]=\frac{d}{dy}[g(y)]\cdot\frac{dy}{dx}$ ------------------ $\displaystyle \frac{d}{dx}(x^{2}-2y)=\frac{d}{dx}(6)$ $2x-2\displaystyle \frac{dy}{dx}=0\qquad /-2x$ $-2\displaystyle \frac{dy}{dx}=-2x\qquad/\div(-2)$ $\displaystyle \frac{dy}{dx}=x.$ ======================== Alternatively, solving the initial equation for y: $x^{2}-2y=6\quad/-x^{2}$ $-2y=-x^{2}+6\quad/\div(-2)$ $y=\displaystyle \frac{1}{2}x^{2}-3$ Differentiating (constant m. power, constant), $\displaystyle \frac{dy}{dx}=\frac{1}{2}\cdot 2x+0$ $\displaystyle \frac{dy}{dx}=x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.