Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 17

Answer

$\displaystyle \frac{dx}{dy}=\frac{3y}{x}$

Work Step by Step

We can find $\displaystyle \frac{dy}{dx}$, and apply $\displaystyle \frac{dx}{dy}=\frac{1}{(\frac{dy}{dx})}.$ $\displaystyle \frac{d}{dx}[x^{2}]=2x$ $\displaystyle \frac{d}{dx}[3y^{2}]=$... chain rule...$=3\displaystyle \cdot 2y\cdot\frac{dy}{dx}=6y\frac{dy}{dx}$ $\displaystyle \frac{d}{dx}[8]=0$ So, after differentiating both sides, $2x-6y\displaystyle \frac{dy}{dx}=0\qquad /-2x$ $-6y\displaystyle \frac{dy}{dx}=-2x\qquad /\div(-6y)$ $\displaystyle \frac{dy}{dx}=\frac{-2x}{-6y}=\frac{x}{3y}$ $\displaystyle \frac{dx}{dy}=\frac{1}{(\frac{dy}{dx})}=\frac{3y}{x}$ $\displaystyle \frac{dx}{dy}=\frac{3y}{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.