Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 7

Answer

$$\frac{{dy}}{{dx}} = - {e^{ - x}}$$

Work Step by Step

$$\eqalign{ & {e^x}y = 1 \cr & {\text{Differentiate both sides with respect to }}x \cr & \underbrace {\frac{d}{{dx}}\left[ {{e^x}y} \right]}_{{\text{Product rule}}} = \frac{d}{{dx}}\left[ 1 \right] \cr & {e^x}\frac{d}{{dx}}\left[ y \right] + y\frac{d}{{dx}}\left[ {{e^x}} \right] = 0 \cr & {e^x}\frac{{dy}}{{dx}} + {e^x}y = 0 \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & {e^x}\frac{{dy}}{{dx}} = - {e^x}y \cr & \frac{{dy}}{{dx}} = - \frac{{{e^x}y}}{{{e^x}}} \cr & \frac{{dy}}{{dx}} = - y \cr & \cr & {\text{Solving for }}y \cr & {e^x}y = 1 \cr & y = {e^{ - x}} \cr & {\text{Differentiate }} \cr & y = - {e^{ - x}} \cr & \cr & {\text{Substituting }}y = {e^{ - x}}{\text{ into }}\frac{{dy}}{{dx}} = - y \cr & \frac{{dy}}{{dx}} = - {e^{ - x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.