Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 19

Answer

$\displaystyle \frac{dp}{dq}=\frac{10p^{2}q+p}{2p-q-10pq^{2}}$

Work Step by Step

We treat p as p(q) $\displaystyle \frac{d}{dq}[p^{2}]$= .. chain rule...$=2p\displaystyle \frac{dp}{dq}$ $\displaystyle \frac{d}{dq}[pq]$= ... product...$=\displaystyle \frac{dp}{dq}\cdot q+p(1)$ $\displaystyle \frac{d}{dq}[5(pq)^{2}]$= ... chain rule...$=5\displaystyle \cdot 2(pq)\cdot\frac{d}{dq}[pq]=$ $=5\displaystyle \cdot 2(pq)\cdot(\frac{dp}{dq}\cdot q+p)$ So, after differentiating both sides, we solve for $\displaystyle \frac{dp}{dq}$: $2p\displaystyle \frac{dp}{dq}-(\frac{dp}{dq}\cdot q+p)=10(pq)\cdot(\frac{dp}{dq}\cdot q+p)$ $2p\displaystyle \frac{dp}{dq}-\frac{dp}{dq}\cdot q-p=10pq^{2}\cdot\frac{dp}{dq}\cdot q+10p^{2}q$ $\displaystyle \frac{dp}{dq}(2p-q-10pq^{2})=10p^{2}q+p$ $\displaystyle \frac{dp}{dq}=\frac{10p^{2}q+p}{2p-q-10pq^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.