Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 25

Answer

$\dfrac{y e^x}{y^3e^y +2 e^x}$

Work Step by Step

We have: $\dfrac{e^x}{y^2}=1+e^y$ We differentiate both sides with respect to $t$. $-2y^{-3} \dfrac{dy}{dx}+y^{-2} e^x =e^y \dfrac{dy}{dx} \\ (e^y +2y^{-3} e^x)\dfrac{dy}{dx}=y^{-2} e^x\\\dfrac{dy}{dx}=\dfrac{y^{-2} e^x}{e^y +2y^{-3} e^x}$ Therefore, $ \dfrac{dy}{dx}=\dfrac{y e^x}{y^3e^y +2 e^x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.