Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 4

Answer

$\displaystyle \frac{dy}{dx}=-\frac{2}{3}x.$

Work Step by Step

Differentiating an equation containing terms of form $f(x)$ and $g(y)$, terms $f(x)$ are differentiated directly, $\displaystyle \frac{d}{dx}[f(x)],$ and terms $g(y)$ are differentiated using the chain rule, $\displaystyle \frac{d}{dx}[g(y)]=\frac{d}{dy}[g(y)]\cdot\frac{dy}{dx}$ ------------------ $\displaystyle \frac{d}{dx}(3y+x^{2})=\frac{d}{dx}(5)$ $3\displaystyle \frac{dy}{dx}+2x=0\qquad /-2x$ $3\displaystyle \frac{dy}{dx}=-2x\qquad/\div(3)$ $\displaystyle \frac{dy}{dx}=-\frac{2}{3}x.$ ======================== Alternatively, solving the initial equation for y: $3y+x^{2}=5\quad/-x^{2}$ $3y=-x^{2}+5\quad/\div 3$ $y=-\displaystyle \frac{1}{3}x^{2}-3$ Differentiating (constant mult., power, constant), $\displaystyle \frac{dy}{dx}=-\frac{1}{3}\cdot 2x-0$ $\displaystyle \frac{dy}{dx}=-\frac{2}{3}x.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.