Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 10

Answer

$y^{\prime}=\displaystyle \frac{xy^{2}+y}{x\ln x}$

Work Step by Step

Differentiating an equation containing terms of form $f(x)$ and $g(y)$, terms $f(x)$ are differentiated directly, $\displaystyle \frac{d}{dx}[f(x)],$ and terms $g(y)$ are differentiated using the chain rule, $\displaystyle \frac{d}{dx}[g(y)]=\frac{d}{dy}[g(y)]\cdot\frac{dy}{dx}$ ------------------ LHS: quotient, $( \displaystyle \frac{u}{v})^{\prime}=\frac{u^{\prime}v-uv^{\prime}}{v^{2}}$ RHS: sum, first term:constant $\displaystyle \frac{\ln x}{y}=2-x$ Differentiate both sides, $\displaystyle \frac{\frac{1}{x}\cdot y-\ln x\cdot y^{\prime}}{y^{2}}=0-1\qquad/\times y^{2}$ ... isolating $y^{\prime}$ on one side... $\displaystyle \frac{y}{x}-\ln x\cdot y^{\prime}=-y^{2}\qquad/-\frac{y}{x}$ $-\displaystyle \ln x\cdot y^{\prime}=-y^{2}-\frac{y}{x}\qquad/\times(-1)$ $\displaystyle \ln x\cdot y^{\prime}=y^{2}+\frac{y}{x}\qquad/\div\ln x$ $y^{\prime}=\displaystyle \frac{xy^{2}+y}{x\ln x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.