Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.6 - Implicit Differentiation - Exercises - Page 852: 6

Answer

$$\frac{{dy}}{{dx}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & x - y = xy \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ x \right] - \frac{d}{{dx}}\left[ y \right] = \underbrace {\frac{d}{{dx}}\left[ {xy} \right]}_{{\text{Product rule}}} \cr & \frac{d}{{dx}}\left[ x \right] - \frac{d}{{dx}}\left[ y \right] = x\frac{d}{{dx}}\left[ y \right] + y\frac{d}{{dx}}\left[ x \right] \cr & 1 - \frac{{dy}}{{dx}} = x\frac{{dy}}{{dx}} + y\left( 1 \right) \cr & 1 - \frac{{dy}}{{dx}} = x\frac{{dy}}{{dx}} + y \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} + x\frac{{dy}}{{dx}} = 1 - y \cr & \left( {1 + x} \right)\frac{{dy}}{{dx}} = 1 - y \cr & \frac{{dy}}{{dx}} = \frac{{1 - y}}{{1 + x}} \cr & \cr & {\text{Solving for }}y \cr & x - y = xy \cr & xy + y = x \cr & y\left( {x + 1} \right) = x \cr & y = \frac{x}{{x + 1}} \cr & {\text{Differentiate by using the quotient rule}} \cr & \frac{{dy}}{{dx}} = \frac{{x + 1 - x}}{{{{\left( {x + 1} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \cr & \cr & {\text{Substituting }}y = \frac{x}{{x + 1}}{\text{ into }}\frac{{dy}}{{dx}} = \frac{{1 - y}}{{1 + x}} \cr & \frac{{dy}}{{dx}} = \frac{{1 - \frac{x}{{x + 1}}}}{{1 + x}} \cr & \frac{{dy}}{{dx}} = \frac{{x + 1 - x}}{{{{\left( {1 + x} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.