Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 48

Answer

The remainder is zero. $\{-1,\frac{1}{3},\frac{1}{2}\}$.

Work Step by Step

Use synthetic division to divide the polynomial $6x^3+x^2-4x+1$ by $x-c$, where $c=\frac{1}{2}$. $\begin{matrix} \frac{1}{2}) &6&1&-4&1 \\ & &3&2&-1 \\ & --&--&--& --\\ & 6&4&-2&0 ​\end{matrix}$ The quotient is $6x^2+4x-2$ and the remainder is zero. Since the remainder is $0$, it means $\frac{1}{2}$ is a solution of the given equation. Factor the given expression using the result from the synthetic division. $\Rightarrow (x-\frac{1}{2})(6x^2+4x-2)=0$ Factor out $2$. $\Rightarrow 2(x-\frac{1}{2})(3x^2+2x-1)=0$ Factor $3x^2+2x-1$. Rewrite the middle term $+2x$ as $3x-1x$. $\Rightarrow 3x^2+3x-1x-1$ Group the terms. $\Rightarrow (3x^2+3x)+(-1x-1)$ Factor each term. $\Rightarrow 3x(x+1)-1(x+1)$ Factor out $(x+1)$. $\Rightarrow (x+1)(3x-1)$ Back substitute into the equation. $\Rightarrow 2(x-\frac{1}{2})(x+1)(3x-1)=0$ By using zero product rule set each factor equal to zero. $\Rightarrow x-\frac{1}{2}=0$ or $x+1=0$ or $3x-1=0$ Isolate $x$. $\Rightarrow x=\frac{1}{2}$ or $x=-1$ or $x=\frac{1}{3}$ The solution set is $\{-1,\frac{1}{3},\frac{1}{2}\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.