Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 23

Answer

$\frac{5x-2}{(x+2)(x-2)(x-3)}$.

Work Step by Step

The given expression is $=\frac{2}{x^2-5x+6}+\frac{3}{x^2-x-6}$ Factor $x^2-5x+6$. Rewrite the middle term $-5x$ as $-3x-2x$ $=x^2-3x-2x+6$ Group terms. $=(x^2-3x)+(-2x+6)$ Factor each term. $=x(x-3)-2(x-3)$ Factor out $(x-3)$. $=(x-3)(x-2)$. Factor $x^2-x-6$. Rewrite the middle term $-5x$ as $-3x+2x$ $=x^2-3x+2x-6$ Group terms. $=(x^2-3x)+(2x-6)$ Factor each term. $=x(x-3)+2(x-3)$ Factor out $(x-3)$. $=(x-3)(x+2)$. Substitute all factors into the given expression. $=\frac{2}{(x-3)(x-2)}+\frac{3}{(x-3)(x+2)}$ LCM $=$ greatest power of all the prime factors. LCM $=(x+2)(x-2)(x-3)$ $=\frac{(x+2)}{(x+2)}\cdot \frac{2}{(x-3)(x-2)}+\frac{(x-2)}{(x-2)}\cdot \frac{3}{(x-3)(x+2)}$ Simplify. $=\frac{2(x+2)}{(x+2)(x-2)(x-3)}+ \frac{3(x-2)}{(x+2)(x-2)(x-3)}$ Add both numerators because both denominators are equal. $=\frac{2(x+2)+3(x-2)}{(x+2)(x-2)(x-3)}$ Use the distributive property. $=\frac{2x+4+3x-6}{(x+2)(x-2)(x-3)}$ Simplify. $=\frac{5x-2}{(x+2)(x-2)(x-3)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.