Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 27

Answer

$\frac{2x^2-9}{(x+3)(x-3)}$.

Work Step by Step

The given expression is $=\frac{x}{x+3}+\frac{x}{x-3}-\frac{9}{x^2-9}$ Factor $x^2-9$ $=x^2-3^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(x+3)(x-3)$. Substitute the factor into the given expression. $=\frac{x}{x+3}+\frac{x}{x-3}-\frac{9}{(x+3)(x-3)}$ LCM $=(x+3)(x-3)$ $=\frac{(x-3)}{(x-3)}\cdot \frac{x}{x+3}+\frac{(x+3)}{(x+3)}\cdot \frac{x}{x-3}-\frac{9}{(x+3)(x-3)}$ Simplify. $=\frac{x(x-3)}{(x+3)(x-3)}+ \frac{x(x+3)}{(x-3)(x+3)}-\frac{9}{(x+3)(x-3)}$ Add both numerators because both denominators are equal. $=\frac{x(x-3)+x(x+3)-9}{(x+3)(x-3)}$ Use the distributive property in the numerator. $=\frac{x^2-3x+x^2+3x-9}{(x+3)(x-3)}$ Simplify. $=\frac{2x^2-9}{(x+3)(x-3)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.