Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 25

Answer

$\frac{4x}{(3x+4)(3x-4)}$

Work Step by Step

The given expression is $=\frac{3x^2}{9x^2-16}-\frac{x}{3x+4}$ Factor $9x^2-16$. $=(3x)^2-4^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(3x+4)(3x-4)$ $=\frac{3x^2}{(3x+4)(3x-4)}-\frac{x}{3x+4}$ LCM $=$ greatest power of all the prime factors. LCM $=(3x+4)(3x-4)$ $=\frac{3x^2}{(3x+4)(3x-4)}-\frac{(3x-4)}{(3x-4)}\frac{x}{3x+4}$ Simplify. $=\frac{3x^2}{(3x+4)(3x-4)}-\frac{x(3x-4)}{(3x+4)(3x-4)}$ Add both numerators because both denominators are equal. $=\frac{3x^2-x(3x-4)}{(3x+4)(3x-4)}$ Simplify. $=\frac{3x^2-3x^2+4x}{(3x+4)(3x-4)}$ $=\frac{4x}{(3x+4)(3x-4)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.