Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 26

Answer

$\frac{(y-3)}{(y+3)(y+1)}$.

Work Step by Step

The given expression is $=\frac{y}{y^2+5y+6}-\frac{2}{y^2+3y+2}$ Factor $y^2+5y+6$ Rewrite the middle term $5y$ as $3y+2y$. $=y^2+3y+2y+6$ Group terms. $=(y^2+3y)+(2y+6)$ Factor each term. $=y(y+3)+2(y+3)$ Factor out $(y+3)$. $=(y+3)(y+2)$ Factor $y^2+3y+2$ Rewrite the middle term $3y$ as $2y+y$. $=y^2+2y+y+2$ Group terms. $=(y^2+2y)+(y+2)$ Factor each term. $=y(y+2)+1(y+2)$ Factor out $(y+2)$. $=(y+2)(y+1)$ Substitute the factor into the given expression. $=\frac{y}{(y+3)(y+2)}-\frac{2}{(y+2)(y+1)}$ LCM $=$ greatest power of all the prime factors. LCM $=(y+3)(y+2)(y+1)$ $=\frac{(y+1)}{(y+1)}\cdot \frac{y}{(y+3)(y+2)}-\frac{(y+3)}{(y+3)}\cdot \frac{2}{(y+2)(y+1)}$ Simplify. $= \frac{y(y+1)}{(y+3)(y+2)(y+1)}-\frac{2(y+3)}{(y+3)(y+2)(y+1)}$ Add both numerators because both denominators are equal. $= \frac{y(y+1)-2(y+3)}{(y+3)(y+2)(y+1)}$ Use the distributive property in the numerator. $= \frac{y^2+y-2y-6}{(y+3)(y+2)(y+1)}$ $= \frac{y^2-y-6}{(y+3)(y+2)(y+1)}$. Factor $y^2-y-6$. Rewrite the middle term $-y$ as $-3y+2y$. $=y^2-3y+2y-6$ Group terms. $=(y^2-3y)+(2y-6)$ Factor each term. $=y(y-3)+2(y-3)$ Factor out $(y-3)$. $=(y-3)(y+2)$ Substitute the factor into the fraction. $= \frac{(y-3)(y+2)}{(y+3)(y+2)(y+1)}$. Cancel common terms. $= \frac{(y-3)}{(y+3)(y+1)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.