Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 34

Answer

$\frac{1+x}{1-x}$.

Work Step by Step

The given expression is $=\frac{x^{-2}+x^{-1}}{x^{-2}-x^{-1}}$ Multiply and divide the fraction by $x^2$. $=\frac{x^2}{x^2} \cdot \frac{x^{-2}+x^{-1}}{x^{-2}-x^{-1}}$ Use the distributive property. $= \frac{x^2 \cdot x^{-2}+x^2 \cdot x^{-1}}{x^2 \cdot x^{-2}-x^2 \cdot x^{-1}}$ Add powers of the same base. $= \frac{x^{-2+2}+x^{-1+2}}{x^{-2+2}-x^{-1+2}}$ Simplify. $= \frac{x^{0}+x^{1}}{x^{0}-x^{1}}$ $= \frac{1+x}{1-x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.