Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Review Exercises - Page 497: 40

Answer

$2x^2+3x-1$.

Work Step by Step

The given expression is $(4x^4+6x^3+3x-1)\div(2x^2+1)$ Rewrite as $(4x^4+6x^3+0x^2+3x-1)\div(2x^2+0x+1)$ $\begin{matrix} & 2x^2&+3x ​&-1 &&& \leftarrow &Quotient\\ &-- &-- &--& --&--& \\ 2x^2+0x+1) &4x^4&+6x^3&+0x^2&+3x&-1 & \\ ​& 4x^4&0x^3 & +2x^2 && & \leftarrow &2x^2(2x^2+0x+1) \\ & -- & -- & -- & & &\leftarrow &subtract \\ & 0 & 6x^3 &-2x^2& +3x & \\ & & 6x^3 & +0x^2 &+3x & & \leftarrow & 3x(2x^2+0x+1) \\ & & -- & -- &--&&\leftarrow & subtract \\ & & 0&-2x^2 &+0&-1\\ & & &-2x^2 &-0x&-1&\leftarrow & -1(2x^2+0x+1)\\ & & & -- & -- & --&\leftarrow & subtract \\ & & &0 &0&0& \leftarrow & Remainder ​\end{matrix}$ The answer is $\Rightarrow Quotient + \frac{Remainder}{Divisor}$ $\Rightarrow 2x^2+3x-1+\frac{0}{2x^2+0x+1}$. $\Rightarrow 2x^2+3x-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.