Answer
$458\frac{m}{s}$
Work Step by Step
We can calculate $v_{rms}$ through the formula:
$v_{rms}=\sqrt{\frac{1}{N}\Sigma_{i=1}^Nv_i^2}$
Substituting the values into this formula, we get
$v_{rms}=\sqrt{\frac{1}{10}[4(200)^2+2(500)^2+4(600)^2]}$
$v_{rms}=\sqrt{\frac{1}{10}(2100000)}$
$v_{rms}=458.3\frac{m}{s}$
$v_{rms}\approx458.3\frac{m}{s}$