Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.7 Complex Numbers; Quadratic Equations in the Complex Number System - A.7 Assess Your Understanding - Page A61: 63

Answer

$\left\{\dfrac{1}{4}-\dfrac{1}{4}i,\dfrac{1}{4}+\dfrac{1}{4}i \right\}$

Work Step by Step

The given equation has $a=8,b=-4$ and $c=1$. The discriminant is $=b^2-4ac$ $=(-4)^2-4(8)(1)$ $=16-32$ $=-16$ Use Quadratic formula. $x=\dfrac{-b\pm \sqrt {b^2-4ac}}{2a}$ Substitute the values of $a, b, c, $ and discriminant to obtain: $x=\dfrac{-(-4)\pm \sqrt {(-16)}}{2(8)}$ Simplify. $x=\dfrac{4\pm \sqrt{16(-1)}}{16}$ $x=\dfrac{4\pm 4i}{16}$ Factor out $4$. $x=\dfrac{4(1\pm i)}{16}$ Cancel common factor $4$. $x=\dfrac{1\pm i}{4}$ The equation has two solutions: $\frac{1}{4}-\frac{i}{4}$ and $\frac{1}{4}+\frac{i}{4}$. Check: For $x=\frac{1}{4}-\frac{i}{4}$. $=8(\frac{1}{4}-\frac{i}{4})^2-4(\frac{1}{4}-\frac{i}{4})+1$ $=8(\frac{1}{16}-2\cdot \frac{i}{16}+\frac{i^2}{16})-1+i+1$ $=\frac{1}{2}-i+\frac{i^2}{2}-1+i+1$ $=\frac{1}{2}+\frac{i^2}{2}$ $=\frac{1}{2}-\frac{1}{2}$ $=0$ For $x=\frac{1}{4}+\frac{i}{4}$. $=8(\frac{1}{4}+\frac{i}{4})^2-4(\frac{1}{4}+\frac{i}{4})+1$ $=8(\frac{1}{16}+2\cdot \frac{i}{16}+\frac{i^2}{16})-1-i+1$ $=\frac{1}{2}+i+\frac{i^2}{2}-1-i+1$ $=\frac{1}{2}+\frac{i^2}{2}$ $=\frac{1}{2}-\frac{1}{2}$ $=0$ Hence, the solution set is $\left\{\dfrac{1}{4}-\dfrac{1}{4}i,\dfrac{1}{4}+\dfrac{1}{4}i \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.