Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 46

Answer

$$ 12 $$

Work Step by Step

Definition 5.4.3 $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\left(-\left(1+\frac{\frac{(-1+k)4}{n}+\frac{4 k}{n}}{2}+6\right)\right)$ .$\frac{4}{n}$ $=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\left(-\frac{-4+8 k}{2 n}+5\right) \cdot \frac{4}{n}$ $x_{k}^{*}$ is the midpoint, $f(x)=-x+6, \Delta x=\frac{4}{n}$ $A=\lim _{n \rightarrow+\infty} \frac{20}{n} \sum_{k=1}^{n} 1-\frac{32}{2 n^{2}} \sum_{k=1}^{n} \frac{16}{n^{2}}+k \sum_{k=1}^{n} 1$ Rewrite sum in closed form $=\lim _{n \rightarrow+\infty} \frac{20 n}{n}-\frac{16 n}{n^{2}}+\frac{(1+n)32 n}{4 n^{2}}$ \[ A=-\frac{32}{4}+\frac{80}{4}=12 \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.