Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 41

Answer

$$\frac{15}{4}$$

Work Step by Step

Definition 5.4.3 $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ $x_{k}^{*}$ is the left endpoint, so: $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} \frac{\frac{3(-1+k)}{n}+1}{2} \cdot \frac{3}{n}$ $\mathrm{f}(\mathrm{x})=\mathrm{x} / 2, \Delta x=\frac{3}{n}$ Rewrite sum in closed form: $A=\lim _{n \rightarrow+\infty}\left(-9 n+\frac{15 n^{2}}{4 n^{2}}\right)$ $A=\frac{15}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.